
International Journal of Theoretical Physics, Vol. 25, No. 5, 1986 

Symplectic  Manifolds ,  Coadjoint Orbits, and Mean 
Field Theory 
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Mean field theory is given a geometrical interpretation as a Hamiltonian dynami- 
cal system. The Hartree-Fock phase space is the Grassmann manifold, a symplec- 
tic submanifold of the projective space of the full many-fermion Hilbert space. 
The integral curves of the Hartree-Fock vector field are the time-dependent 
Hartree-Fock solutions, while the critical points of the energy function are the 
time-independent states. The mean field theory is generalized beyond deter- 
minants to coadjoint orbit spaces of the unitary group; the Grassmann variety 
is the minimal coadjoint orbit. 

1. INTRODUCTION 

The mean field theory of atomic electrons (Hartree, 1927-28) is based 
upon the simple picture of a neutral atom composed of a massive, positively 
charged nucleus plus A orbiting electrons in states ~b~, a = 1, 2, . . . ,  A. The 
single-electron states are solutions to the Hartree equation 

1 A e  2 

2m r 

where the first term gives the kinetic energy of  the electron in the state ~b~, 
the second term is its Coulomb attraction to the fixed nucleus at the origin, 
and the third term is its Hartree Coulomb repulsion from the orbiting 
electrons 

VH(r) = p(r') d3r  ' (2) 

where the density of electrons at r' is given by 

o(r') : ~ ]~,(r')l 2 (3) 
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Although equation (1) has the appearance of a Hamiltonian eigenvalue 
problem, the Hartree potential depends upon the states through the density. 
Thus, it is a nonlinear equation for which the states ~ must be determined 
self-consistently along with the Hartree mean field VH. 

The Hartree self-consistent equation has the advantage of being based 
upon a clear physical picture. On the other hand, it has the disadvantage 
of being wrong. The problem is that the Pauli exclusion principle has not 
been respected. Fock (1930) derived the correct equations using the vari- 
ational principle. The only adjustment is that the local Hartree potential is 
replaced in equation (1) by the nonlocal Hartree-Fock mean field term 

f e2 (VHF~b~)(r) = Y,~ ~ - ~  ~bt3(r')*[~bt~(r')~b~(r)- ~b~(r')~b~(r) ] d3r ' (4) 

Note that VHv is the difference of two terms. The first is just the Hartree 
potential VH, while the second is known as the exchange term. 

The class of A-electron states used in the variational principle is the 
Slater determinants {qb = 01 ^ q52 ̂ " " " ̂  ~bA}. The set of all such determinants 
forms a hypersurface within the vector space of all antisymmetrized wave 
functions (which is itself the span of the determinants). 

Although Hartree-Fock theory is derived from quantum theory, the 
resulting mean field theory has significant structural differences from quan- 
tum mechanics. First, instead of a linear Hamiltonian eigenvalue problem, 
the Hartree-Fock dynamical equation is nonlinear. Second, the set of 
admissible states in Hartree-Fock theory does not form a vector space. The 
aim of this paper is to clarify the fundamental theoretical structure of mean 
field theories. We shall see that a mean field theory is a classical Hamiltonian 
dynamical system! The unitary group acting on the single-particle Hilbert 
space plays a key role in the formulation. 

The analysis will make it possible to generalize Hartree-Fock theory 
to nondeterminantal wave functions. Also, a simple existence proof  for 
Hartree-Fock solutions is given, using some algebraic topology. The results 
are not restricted to multielectron atoms and, indeed, may be applied to 
any finite system of interacting fermions. 

2. UNITARY GROUP ORBITS 

Let us suppose, for technical simplicity, that the single-particle space 
has finite dimension n. Then the full Hilbert space of A-fermion states is 
the exterior (or antisymmetrized tensor) product of A copies of the single- 
particle space. It has dimension n ! / [ A ! ( n - A ) ! ] .  The unitary group U(n)  
acts on the single-particle space and, hence, on the A-fermion space. 
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The manifold of states relevant to mean field theory is the space of 
rays of determinants�9 It may be identified with the complex Grassmann 
variety CG(A, n - A ) ,  which is the manifold of A-dimensional hyperplanes 
in an n-dimensional complex vector space. To see the connection, suppose 
that �9 = 61 ^ 62 A ' ' ' ^  6A is a ray representative�9 Then the hyperplane 
spanned by {61, 6 2 , . . . ,  6A} is the corresponding point in the Grassmann 
variety�9 On the other hand, given an A-dimensional hyperplane, choose a 
basis {61, 6 2 , . . . ,  6A} for it, thereby giving the determinant �9 = 61 ^ 62 ^ 
�9 " " A 6 A "  

Hartree-Fock theory can be characterized by two properties of the 
U(n) group action on the Grassmann variety. First, U(n) acts transitively 
on CG(A, n -  A). This is proven by fixing a hyperplane and selecting an 
orthonormal basis {~01, ~ t 2 , . � 9  , ~/A} spanning it. Then, given any other 
hyperplane spanned by an orthonormal basis { 6 1 , 6 2 , . . . ,  6A}, choose 
gc U(n) so that 6~ = gqJ~. Thus, 

g xIr = g~ l  I A g~ l  2 A "  " " A g~ l  A = 6 1 A  6 2  A "  " " A 6 A  = C~ 

The second key property is really a consequence of the first: Elements 
of the Lie algebra u(n) may be identified with tangent vectors to the orbit 
space�9 Let b~ + (respectively b~) denote the fermion creation (respectively 
destruction) operator for the state ~0~ in a fixed selected orthonormal basis 
{~01,r For X = ( X ~ ) ~ u ( n ) ,  set f(=-Y.~X~t3b+bt~. Let Yx(~) 
denote the curve in the direction X through ~ lying in the space of 
determinants (and hence the Grassmann manifold), 

yx(z)=exp(~'f~)~, - o o <  z<o o  (5) 

The tangent vector to this curve through �9 may be identified with X ~ u(n). 
Since the U(n) action is transitive, the tangent space at �9 is spanned by 
u ( n ). Similarly, gYx (7) is a curve through �9 = g ~  in the direction Adg (X) = 
gXg -1. 

Now, to derive the Hartree-Fock equation, we need only compute the 
critical points to the energy function YC. For �9 a normalized representative 
from CG(A, n -  A), the energy function is given by 

W(*) = ( ~ ] H * )  (6) 

where H is the Hamiltonian operator. A critical point �9 = g ~  of YC is, by 
definition, where the derivative of the energy function vanishes in all 
directions tangent to the Grassmann space, 

d 
0 = dYC(adg(X)) = -~ (gyx(z)lHgyx(Z))[,=o 

= (qb][H, g2g-']c~) (7) 

This equation is equivalent to the Hartree-Foek equation�9 
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One advantage to this derivation of the Hartree-Fock equation is that 
it may be generalized to nondeterminantal wave functions. The above 
argument only depends upon the fact that the manifold of admissible states 
is an orbit of  U(n)  in the exterior product space. Thus, if we choose any 
normalized A-fermion wave function qs and let the orbit space {dp = g~lg  ~ 
U(n)} be the set of admissible states, then the generalized Hartree-Fock 
solutions are the critical points of the energy function and therefore satisfy 
equation (7). Choose a single-particle basis so that = is 
diagonal with occupancies ~,. Then, the generalized Hartree-Fock 
equations for a critical point ~ = g ~  are given b y  

+ �89 - f l(g) *p] (8) 

for a one-plus two-body Hamiltonian H = T +  V, where 

T(g)<~ = • g ~ ,  T,~,~,g~,s3 
ot'[3" 

V ( g ) ~  Y - ~  - ~  = g,,,~'gl3~' V~,'~h,'~'g~/'~,g~'~ 

(9) 
s E V(g)~[(~lb+~b-~b~b. ~t') 

a/38 

Note that in the case of the conventional determinantal theory, 12(g)= 0, 
and equ~ltion (9) reduces to the usual Hartree-Fock equations. 

A significant byproduct of the analysis is a simple existence proof  for 
Hartree-Fock solutions. First, since a U(n)  orbit is compact, the energy 
function attains its maximum and minimum on it, and there must exist at 
least those two solutions. But much more can be asserted in the generic 
case when the energy function has a nondegenerate Hessian at each critical 
point, i.e., there are no catastrophes. In this generic case, Morse theory can 
be applied, and the number of critical points of index k is at least the Betti 
number/3k of  the U(n)  orbit space. For determinantal Hartree-Fock, the 
minimum total number of critical points is ~ fik = n ! / [ A l ( n -  A)!]. This is 
a very satisfying result because this minimum number of critical points 
equals the dimension of the A-fermion Hilbert space and hence the number 
of exact eigenstates of the Hamiltonian. 

3. MEAN FIELD DYNAMICS 

Time-dependent Hartree-Fock theory is a natural extension of the 
time-independent theory. The basic dynamical equation is 

T ~  + VnFC~ = i Ofb~/Ot (10) 
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Our aim is to discover a geometrical interpretation for this equation. Remark- 
ably, equation (10) is a Hamiltonian dynamical equation in the sense of 
classical mechanics with respect to a suitably selected Poisson bracket. 

Rather than define the Poisson bracket, it is both more natural and 
convenient to specify the equivalent symplectic form w. This nondegenerate, 
antisymmetric form is defined on the determinantal orbit for pairs of tangent 
vectors X, Y~ u(n) at the point �9 by 

w,v(X, Y ) = - i ( ~ [ [ X ,  I ) ]~)  ( l l a )  

and at the translated point qb--gq~ by 

to,~(Adg(X), Adg(Y)) : -i(@][g2g -1, g~g-1]~) (11b) 

where Adg(X), Adg(Y) c u(n) are tangent vectors at ~.  Note that to is just 
the form inherited from the projective space of the exterior product Hilbert 
space 

The Hartree-Fock Hamiltonian HHF is the vector field tangent to the 
orbit satisfying the usual classical mechanics relation connecting the vector 
field HHF with the one-form dY( (Abraham and Marsden, 1978) 

toqp(HHv(qb), Adg( X ) ) = dYg( Adg( X ) ) (12) 

for every tangent vector Adg(X) at q~ = g~ .  A time-dependent Hartree-Fock 
solution is an integral curve of the vector field HHF. This dynamics is 
identical to equation (10), as may be verified by direct computation of HHF 
in equation (12). 

One would like to extend this dynamics immediately to nondeterminan- 
tal orbits. However, this is not possible, since the inherited symplectic form 
is only nondegenerate on the Grassmann manifold. Thus, equation (12) has 
no unique solution for the Hartree-Fock vector field on nondeterminantal 
orbits. In order to circumvent this difficulty, I consider the alternative, but 
equivalent, formulation of determinantal Hartree-Fock theory in terms of 
density matrices, which is readily generalized to nondeterminantal states. 

4. COADJOINT ORBITS 

The U(n) group action is interrelated with the symplectic geometry 
on the determinantal orbit since U(n) acts as a group of canonical transfor- 
mations in the sense of classical mechanics, 

w,i,( X, Yi = oog,i,( Adg( X), Adg( Y) ) (13) 

for all X, Y c  u(n). Hence, by the Kostant-Souriau classification theorem, 
the Slater determinants must be in one-to-one correspondence with (a 
covering space of) a coadjoint U(n) orbit (Kostant, 1970; Souriau, 1970). 
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This equivalent version of Hartree-Fock in terms of unitary coadjoint orbits 
is known as the density matrix formulation (Belyaev, 1965). 

A density matrix p ~  = i(q~lb~b~) is an element of the dual space 
u(n)*, i.e., a real-valued linear function of u(n) given by 

p(X)=-tr(pX)=i(~ ; X,~b+~b~) (14) 

The coadjoint action, 

Ad*(p) = gpg-a (15) 

is compatible with the group action on the multifermion states, 

Ad*(p)(X)= i(gq t ~ X,~t3b:b~g* ) (16) 

Lie algebra elements may be regarded as tangent vectors to coadjoint 
orbits, {Ad*(p), g ~ U(n)}, by reasoning similar to the case of wave function 
orbits. But, in contrast to this latter case, every coadjoint orbit is a symplectic 
manifold with the nondegenerate form 

%(X,  Y)= t r (p [X ,  Y]) (17) 

Thus, the Hartree-Fock vector field on a coadjoint orbit is well-defined via 
equation (12) in terms of  the energy function. A generalized time-dependent 
Hartree-Fock solution is an integral curve of the Hartree-Fock vector field. 
A time-independent Hartree-Fock solution is a point where the Hartree- 
Fock vector field vanishes. 

5. DISCUSSION 

The energy function is only unambiguously defined on the coadjoint 
orbit Of determinantal densities. For general density orbits, the (moment) 
map from the A-fermion space onto the dual space g~ --> gpg-1 is many-to- 
one. In order to achieve a well-defined energy function on a coadjoint orbit, 
an average of the Hamiltonian expectation is required (Rosensteel and 
Rowe, 1981). 

The method reviewed here may be generalized to any Lie group acting 
on Fock space. The case of Hartree-Fock-Bogoliubov theory based upon 
the orthogonal group O(2n) has been studied by Rosensteel (1981). 
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